Fault detection and isolation for a wind turbine benchmark using a mixed Bayesian/Set-membership approach

نویسندگان

  • Rosa M. Fernández-Cantí
  • Joaquim Blesa
  • Sebastian Tornil-Sin
  • Vicenç Puig
چکیده

This paper addresses the problem of fault detection and isolation of wind turbines using a mixed Bayesian/Setmembership approach. Modeling errors are assumed to be unknown but bounded, following the set-membership approach. On the other hand, measurement noise is also assumed to be bounded, but following a statistical distribution inside the bounds. To avoid false alarms, the fault detection problem is formulated in a set-membership context. Regarding fault isolation, a new fault isolation scheme that is inspired on the Bayesian fault isolation framework is developed. Faults are isolated by matching the fault detection test results, enhanced by a complementary consistency index that measures the certainty of not being in a fault situation, with the structural information about the faults stored in the theoretical fault signature matrix. The main difference with respect to the classical Bayesian approach is that only models of fault-free behavior are used. Finally, the proposed FDI method is assessed against the wind turbine FDI benchmark proposed in the literature, where a set of realistic fault scenarios in wind turbines are proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Model- Based Fault Detection and Isolation for V47/660kW Wind Turbine

In this paper, in order to increase the efficiency, to reduce the cost and to prevent the failures of wind turbines, which lead to an extensive break down, a robust fault diagnosis system is proposed for V47/660kW wind turbine operated in Manjil wind farm, Gilan province, Iran. According to the acquired data from Iran wind turbine industry, common faults of the wind turbine such as sensor fault...

متن کامل

Fault Detection of Wind Turbines with Uncertain Parameters: A Set-Membership Approach

In this paper a set-membership approach for fault detection of a benchmark wind turbine is proposed. The benchmark represents relevant fault scenarios in the control system, including sensor, actuator and system faults. In addition we also consider parameter uncertainties and uncertainties on the torque coefficient. High noise on the wind speed measurement, nonlinearities in the aerodynamic tor...

متن کامل

On the development of a sliding mode observer-based fault diagnosis scheme for a wind turbine benchmark model

This paper addresses the design of an observer-based fault diagnosis scheme, which is applied to some of the sensors and actuators of a wind turbine benchmark model. The methodology is based on a modified sliding mode observer (SMO) that allows accurate reconstruction of multiple sensor or actuator faults occurring simultaneously. The faults are reconstructed using the equivalent output err...

متن کامل

On the development of a sliding mode observer-based fault diagnosis scheme for a wind turbine benchmark model

This paper addresses the design of an observer-based fault diagnosis scheme, which is applied to some of the sensors and actuators of a wind turbine benchmark model. The methodology is based on a modified sliding mode observer (SMO) that allows accurate reconstruction of multiple sensor or actuator faults occurring simultaneously. The faults are reconstructed using the equivalent output err...

متن کامل

Residual Generator Fuzzy Identification for Wind Farm Fault Diagnosis

In the recent years the wind turbine industry has focused on optimising the cost of energy. One of the important factors in the achievement of this task consists of increasing the reliability of the wind turbines, which can be obtained using advanced fault detection and isolation strategies. Clearly, most faults are managed quite easily at a wind turbine control level. However, some faults are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annual Reviews in Control

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2015